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1. Introduction

We say that a set X C 2% is strongly measure zero (X € SN) if for every meager
set e M, X+ F #2Y Aset X C2¥is strongly meager (X € SM) if for
every null set H e N, X + H # 2%,

In spite of having similar definitions, strongly measure zero sets and strongly
meager sets behave quite differently. The most illustrative example of this asym-
metry is the fact that SN sets form a o-ideal, while under CH the union of two
SM sets doesn’t have to be a member of SM ([2]). On the other hand, strongly
meager sets have certain combinatorial properties which are not necessarily satis-
fied by strongly measure zero sets. For instance, SM sets are completly Ramsey
null ([4]), while under CH there are SA sets that do not have this property
([3]). In the main theorem of this paper we show that in contrast with SN
sets, it is possible (assuming CH) to find X € SM, and a continuous function
F:2¥ — 2 which maps X onto 2*. Before we start, let us recall a couple of
standard definitions and basic facts from the theory of small subsets of 2%,

We define T = {X C 2¥: VF: 2¥ — 2¥ continuous, F”(X) # 2¥} and we
denote by (s)p the ideal of Marczewski sets, that is

(8)o =
{X C 2¥: VP perfect subset of 2“3P’ a perfect subset of P so that XNP' = }.

The following is well-known:

LEMMA 1:
(1) T is a o-ideal,
(2) IS (s)o,
(3) T # (s)o (in ZFC).

Notice that such a o-ideal was defined and investigated in several papers; see,
for example, [3].

Since strongly meager sets and strong measure zero sets are (s)g, it makes
sense to ask if they are in 7.

It is well-known that SN C 7. In fact, if F: 2¥ — 2¥ is a continuous function
and X € SN, then F"(X) € SN.

As we mentioned before, the purpose of this paper is to show:

THEOREM 2: It is consistent with ZFC that SM ¢ 1.

Note that it is easy to see (under CH, for example) that Z € SM.
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2. Combinatorics

The following theorem is the finitary version of the construction.

THEOREM 3: For every k € w, €,8,¢ > 0 there exists n € w such that if I C w,
|I| > n then there is a partition 2! = a®Ua! such that

o
(1) if X C 27, |X| <k, then "ﬂz NGRS P
(2) ifU C 24, and % = a > ¢, then there exists a set Ty; C 27, %-{# >1-—¢€
such that for every s € Ty, '—(L;%)Qﬂ -5l <e

Proof: (1) This is a special case of a result proved in [2] and we will need it only
for k = 2. Fix k,¢,4, and choose the set C C 2! randomly (for the moment I is
arbitrary). For each s € 2!, decisions whether s € C are made independently with
the probability of s € C' equal to 1/2. Thus the set C is a result of a sequence
of Bernoulli trials. Note that by Chebyshev's inequality, the probability that
1/2+6>|C|-2711 > 1/2 — § approaches 1 as |I| goes to infinity.

Let S, be the number of successes in n independent Bernoulli trials with
probability of success p. We will need the following well-known fact.

THEOREM 4 (Bernstein’s Inequality): For every § > 0,

P( % —p| > o‘) < 2784
Consider an arbitrary set X C 2/. To simplify the notation denote V = 2/\ C
and note that (Ve x(C +5s) =2/ \ (V4 X). Forapointt € 2/, t ¢ X +V is
equivalent to (t + X) NV = §. Thus the probability that t € X + V is equal to
27X ast @ X +V means that t + 2 ¢ V for € X.
Let G(X) be a subgroup of (27, +) generated by X. Since every element of 2/
has order 2, it follows that |G(X)| < 211,

LEMMA 5: There are sets {U; : j < |G(X)|} such that:
(1) VjVs,teU; (s#t— s+t & G(X)),
@) ¥ < 1G] = 21/IG(Y),
(3) Vi# jU;nU; =9,
@) Ujgiaon Ui =2

Proof:  Choose U;’s to be disjoint selectors from the cosets 2/ /G(X). ]

Note that if ¢,y € U; then the events ¢4 € X + V and ¢, € X + V are
independent, since sets t; + X and ¢ + X are disjoint. Consider the sets X, =
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Uj NN,ex(C +8), for j < |G(X)]. The expected value of the size of this set is
2-1X1. 2111 /|G(X)|. By Theorem 4, for cach j < |G(X)|.

Xl
P(Igm;

S o | B S ([N 5) < 9217287 /1G(X)]
G(Y) [20) <2

It follows that for every X C 2/ the probability that

S |ns€X(C + S)‘

—1X| _ 5
2 4 51T

<2744
is at least

1 - 2|G(X)|e=2"TFENGXN 5 g gl XiH1-2!I7INI7262

The probability that it happens for every X of size < k is at least

1 — oMl tk41)? | —21M1m8=262

If k and ¢ are fixed, then this expression approaches 1 as |I| goes to infinity, since
lim, o P(x)e™ = 0 for any polynomial P(x). It follows that for sufficiently
large |1} the probability that the “random” set C has the required properties is
> 0. Thus there exist an actual C = a° and 2/ \ C = ! with these properties as
well.

(2) Let ¢® be the set constructed above; without loss of generality we can
assume that
] 1
211~ 2
Define A = {(s,t) : t € a® + s}. Note that A is symmetric, that is (4), =
{t:(s,t) e A} = (A)* = {t: (t,s) € A}.
Let
rc2 and —l—l—l =a>-c¢.
< o1} Z
We want to know how many vertical sections of the set AN (27 x U) are of
size approximately 1/2 relative to U. For s € U, consider random variables
Xs = x((A4)*), where \((A)?) is the characteristic function of (4)°. Note that

the expected value E(X,) = % Moreover,

and for s £ t,
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Note that
‘{.96‘21:‘%-% >e}‘
s‘{sezhﬁﬁﬂ_‘/ Eal

Therefore it suffices to estimate

PR 31> 9)

Note that hy Chebyshev's inequality

P 31> D) = r( Sen- pl> 1)
< (S 0-3) = prae((S (v -3))

U sel

Finally observe that

wrae((S5-3))

ev
e? . 1y2 . 1 .1
:|U|252E( 2 (“"3 N 5) Ly (‘\3 - 5) (‘\' B 5))
sel/ s,tell,s#t
2 o JUUI-D) ey e
—|U|262( PR S Ut

In (1) we showed that as n — oo then § — 0. Therefore if ¢, ¢ are fixed, a large
value of |I| will result in
e 1 é?U-1
42 ) " 2e Ul

<€,

which means that

(a®+s)nU
[{se2": | 5m— - 5i< Ysev Xs 1
i U 2

Finally let

0
S oo @)U e
Ty = {562 : ‘————2”’ 5
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Note that € is the only independent parameter. That is given ¢ we can take
€ < €2,k = 2 and |I| so large that the corresponding 4 is small enough for the
approximations to go through. ]

Definition 1 ([2]): Suppose that I is a finite set. A distribution is a function
m: I — R such that .
0 <mz) < —.

1|
Let m =3 .;m(s).

To illustrate this concept suppose that A C 2% is a measurable set and n € w.
Define m on 2" by m(s) = u(AnN|[s]), for s € 2", A specific instance of this
definition that we will use often in the sequel is when A is a clopen set. In
particular, if K = I; U, and J C 2/ define distribution m on 2 as follows:
for s € 211 let

e J:sCt
oy = €T 5

The following theorem is an extension of Theorem 3 dealing with distributions

instead of sets.

THEOREM 7: For every €,¢ > 0, there exists n € w such that if I C w, |I| > n,
then there is a partition 2! = a® U @' such that if m is a distribution on 2!, and
T > &, then there exists a set Ty, C 27, |T)n|/2"l > 1 — € such that for every
SETm, | {m@):tea®+s} —m/2| <e

Proof: Suppose that €2 > € are given and a®Ua! = 27 are as in Theorem 3, for
¢’ = €2 and € = €3, First observe that if

b
m = -2—|7|"\Un

where U C 27 and |U|/2"! = a > €2, 0 < b < 1 and yy is a characteristic function
of the set U, then it follows immediately from Theorem 3 that for s € Ty,

.Z{m(t) ctea+ s} —m/2| < be® <e.

Next, note that if {U; : ¢ < £}, {b; : i < ¢} are such that
(1) U;nU; =0, for i # j,
(2) 0<b; <1, fori<{,
(3) |Ui1/2"1 > €2, for every i < ¢,
(

b
4) m; = 577 - Xus»



Vol. 139, 2004 STRONGLY MEAGER SETS CAN BE QUITE BIG 243

then for m =3, ,m; and s € (;, Ty, we have

Ty,
< Zb;€3 < #% and %—l >1— 2.
i<l

kz{m(i):te a0+s} — /2

Consider an arbitrary distribution m with m > €2 and let ¢ = 1/e (without
loss of generality it is an integer). Let {U; : ¢ < ¢} be defined as

U ={se2l :ie/2M < m(s) < (i + 1)e/211}.
Let K = {i:|U;]/2Y] > €2}. Put
;o 1€ ) _ _
m = Z o xv;, and U= U U;.
iel i<l

Note that for s € U, and i € K, m(s)—m'(s) < /21l and [m—n/| < e+, €2
= 2e.

Apply 3 to each of the sets {U; : i € K’} to get sets Ty, and put T, = ;e T, -
Clearly |T;,|/2"l > 1 — (€3 =1 — €. Now, for t € Ty,

Z{m(s): s € a4t} < Z{m’(s): 5 € aPHt}4+2e < ml /2434 2e+€% < M/2+3e.
The lower estimate is the samne and we get

1> {m(s):s€a® +t}—m/2 <3e. B

3. ZFC result

As a warm-up before proving the main result we will show a ZFC result that uses
only a small portion of the combinatorial tools developed above.
In order to show that SA C Z one could use the following result:

THEOREM 8 ([4]): Suppose that F: 2¥ — 2¥ is a continuous function. There
exists a set H € M such that

Vi€ %Iy e 2°FHy) C H + =

We will show that the measure analog of this theorem is false.

THEOREM 9: There exists a continuous function F: 2¥ —s 2% such that for
every set G € N,
{z:WF ) CCG+=:}eN.
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Proof: Let 4, k,, I, for n € w be such that
(1) 6, =473, k, = 273,
(2) I, is chosen as in Theorem 3(1), for k = k,, and § = 6, and
(@) |[Ipg1| > 4n+102HoL-Ula|,
(b) min(l,41) > max([,).
Let 2/» = a%Ual be a partition as in Theorem 3(1).
Define F: 2¢ — 2% as

F(JY)(H) =i < rIn € aiz'

Note that for every x € 2¢, F~(z) = [, an™ is a perfect set.
Suppose that G C 2% is null, and let U C 2% be an open set of measure
1/2 > ¢ > 0 containing G. We will show that

p({z: WF ' y) CU+:})—0 ase—0.

v (510 U) _ 3
([s|NT :
Ud — ol MUSITIV) o 20
0 {s € p(s]y ~ 4}
and for n > 0 and t € 200UUli-1 et
t~slnU) 1
t_lg 2[" : ———”([ >1—- .
(' n {g € ;1.([t"s]) - 211.+2 }

Easy computation shows that u(U8) < 4/3= < 2/3. For t € 200U Vln-1_ we say
that t is good if t[Io ¢ UZ, and for j < n — 1, t[; ¢ U;“‘)U'"UI"'I. In particular,
if t € 2foYVUIn-1 ig g00d, then by induction we show that

211.+2 [IV(U n [t]) < 211,+2 ( 1 ) 2n+2 -9

rt
,“(["n.) < an+2 1 ,u([t]) = om+2 _ ] ’ - gn+l ) — 9n+2 _1°

For a good sequence t € 2704 Un—1 et
Zt ={ve2l:3ie2d +vCU}.
By Theorem 3(1), for i = 0,1 and X C 2/» of size n + 10,

X +al) 1 |Neex (@™ + )| 51 1 1 nt2 _ 9

I Il =57 ont10 T gn+3 = on42 _q°

Therefore, |Z!| < n +10. Let Z, = J{Z} : t € 2509Y1n-1 i good}. We get
that |Z,| < (n + 10) - 2HoV VIl 5o in particular, |Z,|- 271" < 277, Let

Wy = {z€2¥:3nzI, € Z,}.

Note that if ¢ < 27=HoUVlal they 7, = Z; = --- = Z, = §. Therefore,
w(Wy) — 0 as ¢ — 0. The following lemma finishes the proof.
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LEMMA 10: If F~'(y) C U + =, then = € Wy.

Proof: Suppose not. By induction build a branch r € : + F~!(y) such that
P+l & (U0, v+ 21 & (U)"{“““, etc. Since U7 is open. it means that
r+z¢U. 1

4. Main result

THEOREM 11: Assume that cov(N) = 2Re. There exists a set X € SM and a
continuous function F: 2 — 2% such that F"(X) = 2“.

Suppose that we have sequence {e,, : n € w} and a partition {I, : n € w} such
that
(1) 2|IQU11U"'UI”| g1 < 6127 < 2-‘271‘
s a0U0al = 2/~ is chosen for €, as in Theorem 7.
2) I,, a®Ual =27 1 f Tl
Note that ¢, = /€, for n € w will satisfy the conclusion of Theorem 7.
Define F: 2% — 2% as F(x)(n) =i <= x[I, € d}, for n € w.

The following lemma gives an abstract condition for our construction to work.

LEMMA 12: Suppose that a o-ideal T on 2%, and o-ideals J, of F~1(x) are such
that the following holds:

(1) forevery GeEN, {z€2¥ :3(G+)INFHa) ¢ T} € 1.

(2) forevery Ge N andte2*, {z:te (G+=2)} el

(3) Vacov(J,) = cov(Z) = 2%,
Then there exists a set € SM such that F”(X) = 2.

Proof: Let {G4 : a < ¢} be enumeration of null sets. and {t, : & < ¢} enumer-
ation of 2*. Build by induction sequences {,, 24 : @ < ¢} such that

(1) 2o € F7(t4),

(2) V< crs & Ga+ za-

Suppose that {xs, 23 : 3 < a} are given.

Consider sets Z = {z € 2¥ : Jx(Gq + 2) N F~Ya) ¢ J:}, and for 3 < a,
Zg={z:13 €(Ga+2)} Let 2o € ZU Uz, Zs. Next consider F~1(t,) and
choose z,, € F‘l(ta)\Ugsa(G/3+:/3). Notice that V<o F 1 (ta)N(Gs+25) € T
|

In our case T = N and J, is the measure ideal on F~!(z). In other words,
let ¢, = 2Mn1=1 and let J be a o-ideal of null sets (with respect to the standard
product measure) on X = [[°°;c,. Note that X' is chosen to be isomorphic

(level by level) with F~'(x), for any x. Let J, be the copy of J on F~!(x).
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Specifically, define measure i, on F~'(2) as pe = [I,e, 1™ where i is

a normalized counting measure on «, (i = 0,1). Clearly, p, is essentially the
Lebesgue measure on F~1(z).
Now what we want to show is that

LEMMA 13: For every G € N,
{z: 3ep(F~Hz)N (G +2)) >0} e N.

Before we go further let us briefly look at the nature of the difficulties in proving
the result using Theorem 9. The problem is that the relation F~1(y) € G + 2 is
not additive. Quick analysis shows that every choice of a point = that will shift G
away from the set we are constructing has to fulfill continuum many requirements.
This is why we change from F~(y) € G+= to F~'(y)N(G+=z) € 7y, an additive
requirement. We still have continuum many constraints; this time we need to
find = such that F~(y) N (G + z) € J,, for every y.

5. Proof of Lemma 13
Suppose that G C 2¢ is a null set.

LEMMA 14: There are sequences { KN, K/, : n € w}, {Jn, J}, : n € w} such that
(1) K, 's and K] s are consecutive intervals that are unions of I,,’s,
(2) Jn C 250, ) C 280,
(3) [ Jul/2WnL, [T /21000 < 1 /27,
(4) G C Hy U Hq, where

Hy={2:3®n 2|k, € J,} and H,={x:3%n x|k} € J,}.
Proof:  Use the Theorem (and its proof) 2.5.7 of [1]. |

Clearly, if we show Lemma 13 for H; and for Hs, then we show it for G.
Therefore, without loss of generality we can assume that

G={v:3n 2K, € ],},

where I, .J,, are as above. Moreover, we can assume that |.J,|/2/%» = 1/2",
since the property we are interested in reflects downwards.
Now suppose that forn € w, K, = I U---UI, . ;. Fix z,2 € 2¥ and let

for n € w,
kny1—1

It = (Jn+21Kp) N H a';(j).

J=kn
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Of course J¥* depends only on [\, and {[kn, kpay).
It is easy to see that F~! (l) N(G+z:)={ve FYx): 3®wlk, € JO°}
Since F~ = [, IT;Z ”“_l J) , it follows that

]T~
pe(F7H2) N (G +2) =0 < Z |H e ])1 < 0

Thus we need to find sets T}, C 25~ such that p (IL, Tn) > 0 and such that if
:€Q+1I,T,. then

. ]2
Vr e 2“2——-——|H P 1(])| .
n

Fixn € wandlet I, = K = LUl U - -Uljyy, J C 28, |J]/218 =27k > ¢
It suffices to show that there exists a set T; C 2% such that [Ty|/2I8 > 1 — ¢,
and for every s € Ty, for every t € 2lF-k+n],

|(J + ) ﬁHﬁ_OakJr | <t
f() K .
*H_] =0 R—J:-J 2 '

In this way for = € Q4+ [[,, 7., and x € 2¢, and sufficiently large n,

el A nIlesd)l _ 1]
kny1—1 x(y t = R
I Hj:;:, “;(J)I | Hn-0 (’l.(i)J 2| Y

It follows that to finish the construction it suffices to prove the lemmma below.

+ €p—1.

LEMMA 15: Suppose that I = I U T U+ U Iy, J C 28, [J]/2I8 > ¢,
Then there exists a set Ty C 2V such that |T,|/2"1 > 1 — €,_, and for every
s € Ty, and every t € 2kk+n]

I(J + 5) mﬂ? Oak”l 1]
9K
|HJ =0 A+] ZI |

Proof: For 0 < i < n, define distribution m; on 279 k+1V-Uliti 59

< €gp—1-

te] sCt

Note that 7; = |J]|/2/M. Observe that the distribution m,, coincides with J,
that is,

77111(5‘) = { 1/2”\' if s € ,]’

0 otherwise.
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We will show by induction that for i < n, there exists a set T}, C 2V k10 Uliti
!En'i‘
oty > (=) [J0 =) > 1 - ey
J<i

such that for every s € T,y,.,

i
1 |]| €p—1
. 0 , . _ . A
‘Z {mi(t) it [y, +sm'+])} 3+ " 9IR] | < 3T
=0
In particular, for i = n, and s € T, = T},
= 1 |]| €L—1
. 0 1 G,
‘Z {m" (t):te H(”’kﬂ' + SUJ)} ontl IR S gnt1”
j=0
The last equation means that for s € T,
|]n(HJ O(1k+J+SrI )l 1 |J| €1
21K] T o+l " 9K on+1”
By moving s, and multiplying by 2"}, we finally get
(7 + 5) N]Tjo Ryl _ M < €t
o a2 2181
Let
I(J + s) mH—o"kﬂl 17 _
- W = CITOry, .
|H i=0 ﬂ]\+J 2

We want to show that error,, < ex_;.
Before we start induction note that we can shrink .J slightly, so that the
resulting set has the following property,

IeU-Ulgey Sh+i
Vi < nVs € 2%% “+(m()7é0—>m()>m).

By removing from J all nodes (and their descendants) that do not have this
property we drop the “measure” by €xin + Skqn—1+ - + % < 28 < €1-1/3.
So let assume that J has the above property and later add e;_;/3 to the error
term.

The inductive proof is straightforward — for mqg we get T,,,, immediately from
Theorem 7.

Now consider m;y1. For each t € 27¢V YTkt 'let m!_ | be the distribution on
2%+ defined as mi, | (s) = 2Te0Vleril, (£ s).
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Clearly,

1 1
2L YUt 1] - Hgivrl’

miy(s) < 2100Vl for every s.

Moreover, m!,, = 2MsU-Ulietilyp (1), In particular, shrinking ] as above yields,
if ml,; > 0, then ml, | > erqi. For every t € 29 Vlwi il " > 0 apply
Theorem 7 to get a set Ty C 27k+i+1 such that |T;|/2/7s+i+11 > 1 — €144, and for

every s € Ty,
'Z{miﬂ(v) D0 €AYy 5}~ /2| < €rgirr
Let Tyniyy = T, x N{To : mly, > 0}. Clearly,
Lol Twl 10T

LU Uliqiva] — ollaU-Uligi]l gl
>((1 - ) - H(1 —epgj)) - (1= 2B Vlipinile, oy
j<i

>(1—€x) H(l - 61.+,) >1—€r_1.

J<i

Suppose that s € T,

Mg

i+1
S {mino: ve [Tiets, + 510

=0

—Z { Z{m,_H S0 €y + S ki) i E H (IL_H + 5| IH.J)}

Jj=0

1
=2 { > {m"’§+l(") UE gy t SUA-+:‘+1} :

t € H((Lg‘f':j + Q[I;‘_*,})}

=0

t i
mi, . 0
Z{Ww uu+,|( 3 +€"+"+‘) ite [Jekyy +S[I"+j)}

i=0

1
EZ{ TR Uh+ SO (Meer + 2ek4ia1) 11 € H ahyj + ‘UHJ)}

Jj=0

1 2€4i41 'i
::—Z- Z {’"li(t) + —-_——_2|lkU"',lk+,’| :te H("'?‘+j + S[II.-+j)

=0

e 1 }J] \ < 1 |J| | error;
5(2"’*1 IRy T €rToni ) = gy T Tk

IN

IA

S€rtivr t+



250 T. BARTOSZYNSKI, A. NOWIK AND T. WEISS Isr. J. Math.

where error; is the error term given by the inductive hypothesis. That gives us

€k+1 €p—1
elrorzS—Jr +"'+€k+ifﬁs

91 2i—1

SO

141

1 J €p—1

E {771.,;+1(1’) vV E I I(a2+j + Sf[k+j)} S W;]TII + = 2i+3 + €htitl-
,‘:0

The lower bound is similar, and we get for s € T,,,

MmMi41

i1

1 lJl €L—1

IZ {7ni+1(t) :te H(agﬂ- + SrI/H—j)} — 2’1 . 51K 21+3 + €ktit1-
j=0
As before that yields the estimate
||(]+8 ﬂH—Oa”\‘Hl_ ‘Jl €h_ 1+21+2 Chpitl-
Ol K 2
|].—[j:0ak+j| 2,1 l 2

Since we started by reducing the “measure” of J by €,_1/3 we get the required
estimate.

Finally we will show the second part of the lemma. We will proceed by induc-
tion on n. If n = 0, then I\ = [, and by the part already proved

I(J+s)nad| ||
@l 2IF

< €f—1-

Now

J
(J+s)Nap] = [(J+ )\ ((J+s)Nnad)| < || - (;T!I—ek_l)ﬂag]

1 1
<+ sl = 511+ erlail = 51T+ ex-alal.

Thus
[(J +5) Ny < 311+ ex—1]ad| _ 1 4 Gt
PN = 21K1 T 29lnl 2

The lower estimate is similar, so we have

[(J+s) ﬁak| 1 |J]| €h1
2|I\ 2 K

2 v
and

J Nal J
el W)

L
The rest of the proof is a repetition of the above argument; the single step
computed here shows that there is no difference whether we use u,? or a}, the
estimates do not change. |
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