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1. Introduction 

We say that  a set X _C 2 ~ is strongly measure zero (X E SAf) if for every meager 

set F C  Ad, X + F ¢  2 ~°. A s e t  X C_ 2 ~° is strongly meager (X ES.hd)  i f fo r  

every mill set H E iV', X + H ~ 2 ~°. 

In spite of having similar definitions, strongly measure zero sets and strongly 

meager sets behave quite differently. The most illustrative example of this asym- 

metry is the fact that  SN" sets form a a-ideal, while under CH the union of two 

32t4 sets doesn't  have to be a member of NA4 ([2]). On the other hand, strongly 

meager sets have certain combinatorial properties which are not necessarily satis- 

fled by strongly measure zero sets. For instance, SAd sets are completly Ramsey 

null ([4]), while under CH there are S3 f  sets that  do not have this property 

([5]). In the main theorem of this paper we show that  in contrast with $N" 

sets, it is possible (assuming CH) to find X E SAd, and a continuous function 

F: 2 ~° --~ 2 ~ which maps X onto 2 ~'. Before we start, let us recall a couple of 

standard definitions and basic facts from the theory of small subsets of 2% 

We define 5[ = {X C 2~: VF: 2 ~° ) 2 ~° continuous, F " ( X )  ¢ 2 ~} and we 

denote by (s)0 the ideal of Marczewski sets, that  is 

= 

{X C 2~: VP perfect subset of 2~3P ~ a perfect subset of P so that  X N P  ~ = @}. 

The following is well-known: 

LEMMA 1: 

(1) Z is a a-ideal, 

(2) z c_ (s)0,  

(3) Z ~ (S)o (in ZFC). 

Notice that  such a a-ideal was defined and investigated in several papers; see, 

for example, [3]. 

Since strongly meager sets and strong measure zero sets are (S)o, it makes 

sense to ask if they are in/7. 

It is well-known that  SN" C_ Z. In fact, if F: 2 ~' ) 2 ~° is a continuous fimction 

and X C SN',  then F"  (X) E SN'. 

As we mentioned before, the purpose of this paper is to show: 

THEOREM 2: It is consistent wi th  ZFC that  SAd  ~ Z. 

Note that  it is easy to see (under CH, for example) that  Z ~ S jr/ .  
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2. C o m b i n a t o r i c s  

The following theorem is the finitary version of the construction. 

THEOREM 3: For every k C w, a,~,e > 0 there exists n C w such that  i f  I C w, 

III > n then there is a partit ion 21 = a°Oa 1 such that  

(1) i f X  c_ 2 I, iX[ _< k, then In~cx(a°+x)12,,, 2~-",~ < 6; 

(2) i f [ /  C 2 r, and lul [zu[ - 2ZTf = a >_ s, then there exists a set Tu C 21 , ~ > 1 - e 
I(a°+s)nUI such that  for every s E Trr, 2,xl < e. 

Proof: (1) This is a special case of a result proved in [2] and we will need it only 

for k = 2. Fix k, ~, 5, and choose the set C c_ 21 randomly (for the moment I is 

arbitrary). For each s E 2 I, decisions whether s E C are made independently with 

the probability of s C C equal to 1/2. Thus the set C is a result of a sequence 

of Bernoulli trials. Note that by Chebyshev's inequality, the probability that 

1/2 + 5 > IcI. 2-1~1 > 1/2 - d approaches 1 as Izl goes to infinity. 

Let. S,~ be the number of successes in n independent Bernoulli trials with 

probability of success p. We will need the following well-known fact. 

THEOREM 4 (Bernstein's Inequality): For every 6 > O, 

Consider an arbitrary set X C 2 I. To simplify the notation denote V = 21 \ C 

and note that n ~ e x ( C  + s) = 21 \ ( v  + x ) .  For a point t E 2' ,  t ~ X + V is 

equivalent to (t + X) N V = 0. Thus the probability that t ~ X + V is equal to 

2 - I x l , a s t  ~ X + V  means t h a t t + x ~ V f o r x E X .  

Let G ( X )  be a subgroup of (2 I, +) generated by X. Since every element of 21 

has order 2, it follows that  IG(X)I  <_ 2 IXI. 

LEMMA 5: There are sets {Uj : j  _< IG(X)I} such that: 

(1) VjVs,  t e U i (s ¢ t -+  s + t  ~ G ( X ) ) ,  

(2) vj _< Ic(X)ll OI-- 2m/la(X)l, 
(3) V i ¢  jUi  n V 5 = 0, 

(4) Uj<lC(X)l u j  = 2 I. 

Proof: Choose Uj's to be disjoint selectors from the cosets 2 ~ / G ( X ) .  | 

Note that if tl,t.~ E Uj then the events t~ C X + V and t2 E X + V are 

independent, since sets tl + X and t2 + X are disjoint. Consider the sets ,¥j = 
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Uj C) f"]scx(C + s), for j _< IG(X)[. The expected value of the size of this set is 

2-1xl .  2m/ia(X)l. By Theorem 4, for each j _< Ia(X)l, 

p ( I  2-txl  I > < 2e-2111-2 62 /Ia( X)l 
U21,1/IG(X) I - _ . 

It  follows that, for every X C 21 the probability that  

2-tXl _(~ < ] ~ s ~ x  (C+'s')[ < 2-1x[ +(~ 
- 2 U I  - 

is at. least. 

1 - 2[G(X)le  -'2m-2'52/IGtx)l > 1 - 21xl+le-2m-lxl-26~. 

The probability that  it. happens for every X of size _< k is at. least 

1 2 Ill'(k+l)2 --2111-te-292 
- -  . ~ ,  . 

If k and 5 are fixed, then this expression approaches 1 as [I] goes to infinity, since 

lim,,._.~ P(x)e  -x  = 0 for any polynonfial P(x) .  It  follows that  for sufficiently 

large Ill the probability that  tim "random" set C has the required properties is 

> 0. Thus there exist an actual C = a ° and 21 \ C = a s with these properties as 

well. 

(2) Let a ° be the set constructed above; without loss of generality we can 

assume that  
]a°[ 1 
2111 - 2 "  

Define ,4 = {(s, t)  : t E a ° + s}. Note that  ,4 is sylmnetric, that  is (A)s = 

{t :  (s , t )  E A} = (A) "~ = {t :  ( t ,s)  E A}. 

Let 
IUI 

UC_21 and 2 - ~ = a > c .  

We want to know how malLv vertical sections of the set A N (2 / × U) are of 

size approximately 1/2 relative to [7. For s E U, consider random variables 

X~ = k((A)S) ,  where \ ( (A)")  is the characteristic function of (A) s. Note that  

the expected value E(X~) = ½. Moreover, 

and for s # t, 

=5 

E( (xs x.x  
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Note tha t  

{ "sE2I" (ao+s) a2[>c}] 

= l { s E 2  / (a°+s) fqUtUt 1 [U 1 
: IUI 21*~ - ~ 2 t > ~} 

< {se2/: i(a°+.s)nU[Ui 21 > 7}e . 

Therefore it, suffices to est imate 

Note tha t  by Chebyshev's  inequality 

sEU 

~2 2 ( ~2 2 _< ~ o  ,;/.,~.~-~/)- - ,~,.,,-((~/x~- ~/) ). 
Finally observe that  

i U i 2 e 2 E  -- _ _ 
• s , tEU, s ¢ t  

- < ~  +a 2 ) -<4~ - 5  IUI +2~ 2 IUI 

In (1) we showed tha t  as ~ -+ ec then 6 --+ O. Therefore if c, e are fixed, a large 

value of III will result in 

e 2 1 (fe 2 I U I -  1 
- - +  - -  < e ,  

4~ IuI 2~2 IUI 

which metals that 

( a ° + s ) n U  a 

2, , ,  _>,(~:~.~ ~ _<~) >1_~. 
Finally let 

: 21II _< e . 
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Note that, c is the only independent, parameter .  Tha t  is given c we can take 

e < c 2, k = 2 and III so large tha t  the corresponding 5 is small enough for the 

approximations to go through.  | 

Def in i t ion  1 ([2]): Suppose tha t  I is a finite set. A distribution is a function 

m: I ----+ R such that. 
1 

o < re(x) <_ ~1" 

Let 7-g = Y~-~el re(s) .  

To illustrate this concept suppose that. A C_ 2 ~ is a measurable set and n E aJ. 

Define m on 2 '~ by re(s) = p(A n [s]), for s E 2 '~. A specific instance of this 

definition that  we will use often in the sequel is when A is a clopen set. In 

particular,  if I (  -- I t  t2 I2 and J C_ 2 I ' ,  define distr ibution m on 2 h as follows: 

for s E 2 h , let 

re(s) = I{t • "1: s C_ t}l 
21hl 

The following theorem is an extension of Theorem 3 dealing with distributions 

instead of sets. 

THEOREM 7: _For every  e, e > O, there exis ts  ~ • w such tha t  i f  I C w, I I I >  n. 

then there is a par t i t ion  21 = a ° O a 1 such tha t  i f  m is a d i s t r ibu t ion  on 21, and 

n--~ >_ e, then there exis ts  a set Tm C 2 I, IZml/211[ > 1 - e such tha t  for every  

s • Try, I Z { m ( t )  : t • a ° + s} - m/21 < ~. 

Proof." Suppose that  ~2 > ~ are given and a°Ua 1 = 21 are as in Theorem 3, for 

e~ = ~2 and d = ~3. First observe tha t  if 

b 

where U C_ 21 and IUI/2 III = a _> e 2, 0 < b _< 1 and Xv is a characteristic function 

of the set U, then it follows immediately from Theorem 3 tha t  for s E Tu, 

: t e a ° + s }  - < w 3 < 

Next, note tha t  if {U~ : i < 5}, {b~ : i < e} are such tha t  

(1) U ~ N U j = O ,  f o r i # j ,  

(2) 0 < b i _ < l ,  f o r i < f ,  

(3) [uil/21~' >_ ~2, for every i < f, 

(4) mi = 2@~ "Xvi, 
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then for m = ~ i < e  mi  and s • ~i<e Tu~, we have 

t Z { m ( t ) : t • a ° + . s } - F ~ / 2  < E b y  3 < e e  2 and In~<eZv'l > 1 - g e  2. 
- 2 1 5  - 

i < e  

Consider an arbi t rary  distr ibution m with N >_ e2 and let ~' = 1/e (without 

loss of generality it is an integer). Let. {Ui : i < f} be defined as 

u~ = {s  • 2~ : i~/21~1 < .~,(.~) <_ (i + a)~/21II}. 

Let I f  = { i :  ]Ui]/2111 _> e2}. Pu t  

ie 
" '  = ~ 2q~" "~' and U = U u~. 

iEt~ i<C 

Note tha t  for s • U, and i e I f ,  r e ( s ) - m ' ( s )  <_ e/2 Ill and Irn-~l _< ~+~<ed 
= 2¢:. 

Apply 3 to each of the sets {Ui : i • K}  to get. sets Tu~ and put  T,~ = ~ i e l ,  Tu~. 

Clearly ]Troll2 III _> 1 - re3 = 1 - e 2. Now, for t • T,~, 

~{m(.s) :  s • a°+t} _< ~ { m ' ( s ) :  s • a°+t}+2~ < ~ / 2 + J + 2 e + d  < Tn/2+3~. 

The lower estimate is the same and we get 

l ~ { - , ( . , )  : ~ ~ ~,o + t} - ,~ /21  < 3~. ,, 

3. ZFC r e s u l t  

As a warm-up before proving the main result we will show a ZFC result tha t  uses 

only a small port ion of the combinatorial  tools developed above. 

In order to show tha t  ,-qN" G Z one could use the following result: 

THEOREM 8 ([4]): Suppose that F: 2 ~" -----+ 2 ~ is a continuous fimction. There 

exists a set H • A4 such that  

V:. E 2~3y • 2 ~ ' F - t ( y )  c_ H + z. 

We will show tha t  the measure analog of this theorem is false. 

THEOREM 9: There exists  a continuous function F: 2 ~ > 2 w such that  for 

every set  G e J~, 

{z : ? y f - l ( y )  C_ G + z} • N'. 
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Proof: Let an, kn,/,,, for n E ~o be such tha t  

(1 )  6 .  = 4 - ' ~ - a ,  k,, = 2 " + a ,  

(2) I,, is chosen as in Theorem 3(1), for k = k ,  and 6 = an and 

(a) I I ,+ l [  >_ 4"+I°21I°u"'uL'I ,  

(b) min(L~+l) > max(I,~). 
Let 2*" o • 1 = a,,Ua,~ be a par t i t ion  as in Theorem 3(1). 

Define F:  2 ~ > 2 ~ as 

i F(.v)(n) = i ~ .t:[I,~ e a , .  

Note tha t  for every x E 2% F - l ( x )  = I-I,~ a,,X (') is a perfect set. 

Suppose tha t  G C_ 2 ~° is null, and let U C_ 2 ~° be an open set of measm'e  

1/2 > e > 0 containing G. We will show tha t  

p.({z : 3 y F - l ( g )  C_ U + z})----+0 as e --+ O. 

Let  
u0 ~={se2 ~o l,([*]nu) 3 

: I,([ .~]) ->4}' 
and for n > 0 and t E 2 t ° u ' u L ' - * ,  let 

{ p([t~s]l-lU) > 1 1 } 
C',  = .~ e 2 ~ " :  l , ( [ t ~ . q )  - - 2,,+--v • 

Easy computa t ion  shows t ha t  p(Uo ~) _< 4/3e  < 2/3. For t ~ 2 * o u u I ' , - ' ,  we say 
rrt[loU'"Ulj-1 t ha t  t is good if t IIo ~ Uo O, and for j <_ n - 1, t IIj ~ wj . I1~ par t icular ,  

if t E 2 I°°' '°l ' '-~ is good, then by inductiou we show tha t  

2"+2 ( 2 , ~ + 1 )  2 ' ~ + 2 - 2  2 "+2 p(UCl[ t ] )  < _ _ .  1 - < 
t'(U~) <_ 2n+2----- ~ p.([t]) - 2,+2 - 1 - 2 "+2 - 1" 

For a good sequence t E 2 t °uu t '~ -~  , let. 

z;~ = { , ,  e 2' , ,  : 3 i  E 2 ,~ ,  + v c u ~ } .  

i = 0 , 1  a n d X C _ 2  r,~ of s i z e n + 1 0 ,  

I~,ex(a),~ - i  + x)l 1 1 
21t,,I >_ 1 2n+l 0 4n+3 

By Theorem 3(1), for 

21t,,------T-- - 1 - - -  -> 2,,+2-----71" 

Therefore,  IZ,t,] < n + 10. Let  Z,~ = U { 4  : t c 2 I°u'''U1,~-I is good}. We get 

tha t  IZ,~I _< (n + 10).  21ZoU...u/,,-ll so in part icular ,  [Z, I • 2-1I,,t < 2 -n .  Let. 

lZ~; = {z E 2 ~ :3nz[I,,. E Z,,}. 

Note tha t  if e < 2 -n - l r °u ' ' ' u* ' l ,  then Zo = Z ,  . . . . .  Z,~ = 0. Therefore,  

# ( W u )  > 0 as e > 0. The  following lmnma finishes the proof. 
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LEMMA 10: If  F - l ( y )  C_ U + z, then z E B}~. 

Proof: Suppose not. By  induction |mild a branch r E z + F -1 (y) such that 

r + ZtIo fL (U)~o, r +  : l i t  ~ (U)'I +:t1°, etc. Since U is open, it means that 

r ÷ z ~ U .  I 

4. M a i n  r e s u l t  

THEOREM 11: A s s m n e  that  cov(.~) = 2 ~°. There exists  a set  X E $.~4 and a 

continuous fmwt ion  F: 2 ~ ~ 2 ~ such that F"  ( X )  = 2 ~. 

Suppose that. we have sequence {e,, : ~ ¢ w} and a par t i t ion  {L, : n E a~} such 

tha t  
(1) 21/oUhU.-.uz,,I "en+l < e 2 < 2-2 'L 

(2) In, u,~u-°'"al,, = 2 I" is chosen for e.. as in Theorem 7. 

Note tha t  ~.  = ~ . .  for n. C 'w will satisfy the conclusion of Theo rem 7. 

Define F:  2 ~ ~ 2 ~' as F ( x ) ( n )  = i 4---+ xri , ,  E a~, for n E w. 

The  following l e m m a  gives an abs t rac t  condit ion for our  const ruct ion to work. 

LEMMA 12: SuN)ose that  a c~-ideal Z on 2 ~, and a-ideaN ~ .  of  F - l ( x )  are such 

that  the following holds: 

(1) for eve~:v G E ,q ,  {z E 2 ~ : Bx(6  + :)  n F - l ( x )  g ~ }  E E. 

(2) for e v o r y G  E H and t E 2 ~, {z : t E (G + z)}  E Z. 

(3) V:r cov(,Z,~) = cov (Z )  = 2 ~°. 

Then there exists a set E ,5"~4 such that  F " ( X )  = 2 ~. 

Proof: Let {Go. : a < c} be enumera t ion  of null sets. and {to : a < e} enumer-  

at ion of 2% Build by induction sequences {xo., z~ : a, < c} such tha t  

(1) .to E F - ' ( t ~ ) ,  
(2) v/3 < c .r/~ ¢ a s  + z~. 

Suppose tha t  {x;~, zZ :/3 < a}  are given. 

Consider sets Z = {z E 2 ~ : R~'(G~ + s) ( - / F - l ( x )  ~ Jx} ,  a M  for 13 < o:, 

Z/~ = {z : .v/~ E ( a s  + z)}. Let z~ ~ Z U Uz<~ z z .  Next  consider F - l ( t ~ )  and 

choose x~ E F - l ( t ~ )  \Uf~<o (G/3+ z/3). Notice that  V~3<~F-l ( t~)N(Gz+z,3)  E J.~. 
| 

In our case Z = N" and J , .  is the measure  ideal on F - l ( x ) .  In other  words, 

let e,, = 2 I s ' l - t ,  and let ,7 be a a- ideal  of null sets (with respect  to the s tandard  

product  measure)  on X = 1-I,~=0°c c,,. Note tha t  X is chosen to be isomorphic 

(level by level) with F-~( : r ) ,  for any x. Let  fix be the copy of ,7 on F - a ( x ) .  
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x(n) 
Specifically, define measure Px on F - l ( x )  as p.~, = l l ,  c~P'-  , where It~ is 

a normalized counting measure on a~ (i = 0, 1). Clearly, p,~, is essentially the 

Lebesgue measure on F - l ( x ) .  

Now what  we want to show is tha t  

LEMMA 13: For every G c N', 

{z: 3xt~,~(F-l(x) n (G + :)) > 0} c Y. 

Before we go further let us briefly look at the nature of tile difficulties in proving 

the result using Theoreln 9. The problem is tha t  the relation F - 1  (y) ~ G + z is 

not. additive. Quick analysis shows tha t  every choice of  a point z tha t  will shift G 

away froln the set we are construct ing has to fulfill cont inuum many  requirements. 

This is why we change from F - l ( y )  g G+z  to F- I ( y )M(G+z)  C (]:y, an additive 

requirement. We still have cont inuum many constraints; this time we need to 

find z such tha t  F - l ( y )  M (G + z) E Jy ,  for every y. 

5. P r o o f  o f  L e m m a  13 

Suppose tha t  G C_ 2 "~ is a null set. 

LEMMA 14: There are sequences { I f . ,  I(~ : n E w}, {J,~ ,]~ : n E w} such that 
(1) / ( .  's and I(~ 's are consecutive intervals that are unions ofI.~ 's, 

(2) gn C 2 K'~ , .l'~ c_ 2 K' ,  
(3) 14~l/2'K-', IJ',l/21z":, < 1/2 n, 
(4) G C_ H1 U H2, where 

H1 ---- {a ' :  3 ~ n  xIICn C 4~) and H2 = { x :  3 ~ n  xrI(~ C ,]~,}. 

Proof: Use the Theorem (and its proof) 2.5.7 of [1]. I 

Clearly, if we show Lemma 13 for H1 and for H2, then we show it for G. 

Therefore, without  loss of generality we can assume that  

G = {:r : 3 ~ n  x [ I ( .  c .In}, 

where Nn, .1, are as above. Moreover, we call assume that  I.],,]/2 II;"1 = 1/2 n, 

since the proper ty  we are interested in reflects downwards. 

Now suppose tha t  for n E w, I ( ,  = I~,~ U - - - U  I#,+~-1. Fix z , x  C 2 ~ and let 

fbr 'n E w, 
1%+1 --1 

.1;,~ '~ = (.L~ + z[I( , )  ~ Y I  a2 (i)" 
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Of eourse .1;~',: depends only on z[I£ ,  and :r[[k~, k ,+ t ) .  

I t  is easy to see tha t  F - l ( . r )  N (G + z) = {v E F - l ( x )  : 3°%~v[I~,~ C .]~"~}. 

[[~"+t-~ @'(J), it tbllows tha t  Since F -  1 (x) = [I,~ ~ ,j=~:,, 

,.x(F-'(:r) n (G + z)) = 0 ~ ~ IJ~":l 
TII,- .+~. - t a ; ( J )  ,, I lij=a,. I 

< o o .  

IJ .... I 
,, V[k,~+,-1 a~u) I < o c .  

F i x n  E w and let. E ,  = N =/~UI~,+IU. . .UI~+,z ,  J C_ 2 I ' ,  IJl/21~q = 2 -A' >_ ~.. 

It suffices to show tha t  there exists a set T j  C_ 2 l" such tha t  ]TjI/21KI > 1 - ~._~ 

and for every s C T j ,  for every t E 2 [k'k+~'], 

~ t(j)  

r~n t(j)  
l l j=o  a~.+j 

21/,1 

Proofi 

Note tha t  ~ = IJ[ /2  II'-I. Observe tha t  the distr ibution m,~ coincides with J ,  

tha t  is. 

m~(s) = { 1/21I'1 if s ¢ J ,  
[ 0 otherwise .  

Ill this way fbr z E Q + I],~ T,~. and x E 2 ~, and sufficiently large ~, 

IJ&l  l(J + ~) n llj=o" "k+~xu) I 
vl.k,~+ t - 1  a~:(j) ~ t(j) I..=~.,, I I l l j=o . .+ j  

IJI 
__< ~ -I- fk -1 .  

It  follows that. to finish the construct ion it suffices to prove the lemma below. 

LEMMA 15: Suppose that  N = Ik U I~,+l O " " U I~.+n, J C_ 2 x(, IJI/2 IIq >_ ek. 

Then there exists a set T j  C 2 h" such that  IZjI /2  II(I > 1 - cA.-1 and for every 

s E T j ,  and evory t E 2B'4 '+-]  

I(J + s )  n l l j = ° c k + J l  - IJ~ < ~ - 1 .  

I I-I~'=0 "k+~,tu)' 2u,, 

For 0 < i < n, def ine  d i s t r i b u t i o n  m i  oll  2 I~U&+~uU1k+~ as 

,ni(.s') = I( t  ¢ J : s C_ t}l 

21KI 

Thus we need to find sets T, C_ 2 K,~ such tha t  P ( I ] ,  T,~) > 0 and such that  if 

z E Q + YI, T, ,  then 
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We will show by induction tha t  tbr i _< n, there exists a set T,,,~ C_ 2 h utk+, u...uI~.+; 

Ir,,,,t 
2ll&ul~.+¢o...I~.+~l 

1 " 1 " .  
> (1 - e&). [ l t l  - ek+j) > 1 -- fk-1 

j<i 

such tha t  for every s E Tin;, 

{mi(t) i } 1 IJI e~,_, 
: t e 1-I(.°+~ + 8IIk+j) - 2i+l 21KI < 2i+ ---Y" 

j=o 

In particular,  for i = n, and s E T,,,,, = T j ,  

" } 1 IJI < eh,_~ 
, , , , , (0:  t • 1-I(.°+~ +.~r;j)  - 2,,+, 21, ,1  2,,+--r 

j=0 

The last equation means that  for s E Tj ,  

[ JD  (1-[~=o a~+j + 8[Ij)[ 1 [J[ ek_ 1 
21KI - 2n+ -----Y 21h'l < 2"+ - - -Y"  

By moving s, mad nnfltiplying by 2 n+l,  we finally get 

I(J + ~) n H~=o o " a~,+jl IJI <~k-~.  
I [ I ~ o  a°+jI 21,,I 

Let 

](J  + s) D 1-I~=o a°+jl I JI = er ror ,  
I II~:o .°+jl  21,.1 • 

We want to show tha t  error,~ < e~,-1. 

Before we start  induction note tha t  we can shrink J slightly, so tha t  the 

resulting set has the following property, 

vi<,~vs~2,~u...u,~.+,(,,,;(8)¢o_+,,,;(8/> ~+~ ) 
- -  -- 2l/ku"'ulk+il " 

By removing from J all nodes (and their descendants) that do not have this 

proper ty  we drop the "measure" by ~k+~ + ~k+n-1 + "'" + ~k < 2~k < ek-1/3.  

So let assume that  J has the above proper ty  and later add ek-1/3  to the error 

term. 

The inductive proof  is straightforward - -  for m0 we get Tmo immediately from 

Theorem 7. 

Now consider mi+l. For each t E 2 Iku ' 'u lk+ ' ,  let m~+ 1 be the distr ibution on 

2 tk+~+~ defined as m~+ 1 (s) = 2 IIku'''uh'+~lmi+l (t ~ s). 
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Clearly, 

m~+l (s') -< 2tlku"'Ul~:+'l 21h.u'"uh,+~+~ll l -- 2t/k+++~' for every s. 

Moreover, m~+ 1 = 21t~u'"ul~'+~lmi(t). In particular, shrinking J as above yields, 

if 1/1~+ 1 > 0, then .m~+ 1 >_ z~,+i. For every t E 21~'u'''ut~+i, m~+ 1 > 0 apply 
Theorem 7 to get a set Tt C_ 21~'+~+ , such that [Tt[/2 Ih'+~+'l >_ 1 - ek+i+l, and for 

every s • Tt, 

, . . . , . , , , . + , . , ' .  : ,' • + .,) - < f k + i + l .  

Let Z,.,+, = Z,, ,  x N { r t  : '"~+1 > o}. Clearly, 

IT,.,+,I ITm, I If ' l ,T,I  
211~.u...Ul~.+i+t] - -21h,  u,-.ul~.+i I 211~.+i+11 

j < i  

> ( 1  - % ) .  H ( 1  - ~,.+.i) > 1 - fk - , .  
j<i 

Suppose that s • rm~+~. 

( / , , , + , ( , , )  : ,, • H ( , , ° + j  + .~rik+~) 
j=O 

i { o } 
= E E {m/+ ' ( t~v)  : v • ak+i+ ' + s[It,+i+,} : t • H(a~.+/ + .s[I~,+j) 

j=O 

( (  1 o } 
i 

" •  H (,,o+~ + .~ r,r,,.+.~) } 
j=O 

{ ' ~,,,:+, ) ' } 
< E  21'~u"'u',.+,l~, 2 +et,+i+, :t•H(a°+j+.,Hk+~) 

j=0 

--<21 E 21/ku..Su',.+,ll (,,~+, + 2~,+,+1): t • H("~+~ + .*rI,,+~) 
j=O 

1 2e~,+i+ I 
= ' 2 E  mi ( t )+  : t •  II(a°+j+sUk+j) 211t.u".lt,+~l 

j=o 

1 ( 1 1"11 + error/)  < 1 1.11 + e,'ro~, 
<ek+i+l + ~ 2i+1 21K----/ - 2i+ 2 21t"~ ~ + ek+i+~, 
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where error/ is the error term given by the inductive hypothesis. That  gives us 

~k ~k+l error/ < ~ + ~ 4- ..- + ek+i < ek-1 
_ _ 2 i + 2 ,  

i+1 { oo } E m, :+ , (v) :v  C H (  ~+J 4-srIk+j) < 2~+2 21l,l 
j=0 

SO 

The lower bound is similar, and we get for s E Tglli_{_l, 

i+1 

Ck-1 
4- ~ 4- ~:k+i+l. 

} 1 IJI < ck-~ 
E " t i + l ( t ) :  t G H ( a ° + j  4 - s I I k+ j  ) -- 2i+2 211i I ~ 4-ek+i+l .  

j=0 

As before that yields the estimate 

I(Z+s)nl-[~=oa°+jl IYl ek-, 2~+2 
n ak+j [ 2tKI T ~k+i+l. ] [Ij=o o < 4- " 

Since we started by reducing the "measure" of J by ¢k- t /3  we get the required 

estimate. 

Finally we will show the second part of the lemnm. We will proceed by induc- 

tion on n. If n = 0, then K = Ik and by the part already proved 

[ ( J + s )  Aa~l [J[ <~k-1- 
laOl 21~,~1 

Now 

Thus 

) I(J 4- s) n all = I(J 4- .~) \ ((J 4- s) n a°)l ~ IJI - \21zcl - ( [ k - - 1  " la°l 

I ( J+  s) na~.l < g l J l +  
21x~l - 21KI 

The lower estimate is similar, so we have 

I(J + s) n c,~.l 1 IJI 
21KI 2 21tel 

and 

1 ]JI e k - t  
- -  - [ -  - -  

2 21 t~l 2 

£k-1 
2 

[ ( J +  s) Aa~l ]J] 

Ja~J 21/,1 < ~k-1. 

The rest, of the proof is a repetition of the above argument; the single step 

computed here shows that there is 11o difference whether we use a ° or alj, the 

estimates do not change. I 
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